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methyl sulfate should provide a highly sensitive technique for 
detection of this type of alkylation of DNA. 

Note Added in Proof. Since submission of this manuscript, 
Professor K. Nakanishi of Columbia University kindly pro­
vided us with preprints of studies on the binding of the isomeric 
9a,10a-epoxide (2) to poly G: I. B. Weinstein, A. M. Jeffrey, 
K. W. Jennette, S. H. Blobstein, R. G. Harvey, H. Kasai, and 
K. Nakanishi, Science, 193, 592 (1976), and A. M. Jeffrey, 
K. W. Jennette, S. H. Blobstein, I. B. Weinstein, F. A. Beland, 
R. G. Harvey, H. Kasai, I. Miura, and K. Nakanishi, J. Am. 
Chem. Soc, 98, 5714 (1976). These studies showed that the 
2-amino group of quanine adds to 2 to form a trans adduct as 
well as other unidentified products. In our hands, diol epoxide 
2 behaves much like diol epoxide 1 in that alkylation of phos­
phate also occurs with this diastereomer of BP 7,8-diol-
9,10-epoxide. In addition, A. M. Jeffrey, S. H. Blobstein, I. B. 
Weinstein, F. A. Beland, R. G. Harvey, H. Kasai, and K. 
Nakanishi,.Prac. Natl. Acad. Sci., U.S.A., 73,2311 (1976), have 
shown that DMBA 5,6-oxide alkylates the N-2 amino group 
of quanine in poly G. 
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A Total Synthesis of d,/-Luciduline by a 
Regioselective Intramolecular Addition of an 
JV-Alkenylnitrone 
Sir: 

Although several studies have been made of intramolecular 
thermal additions of C-alkenylnitrones1 the corresponding 
reaction of JV-alkenylnitrones has received only scant atten­
tion.2 We now wish to report an application of the unexplored 
thermal reaction of an 7V-alkenylhydroxylamine, A, with an 
aldehyde (Scheme I)3 to afford a simple total synthesis of ra-
cemic luciduline (9). The natural rf-alkaloid, isolated from 
Lycopodium lucidulum, has been shown by chemical and 
x-ray evidence4 to have structure 9. Its racemate was synthe­
sized recently by a multistep approach involving an internal 
Mannich reaction.5 
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The first step of our synthesis (Scheme II) consisted in the 
reaction of butadiene in the presence of 1.0 equiv of SnCU in 
dry CH3CN6a with 5-methylcyclohexenone, I.7 Addition took 
place exclusively from the side opposite to the methyl sub-
stituent to give a 3:2 mixture of the cw-octalone, 2, together 
with its trans-isomer 3.8"10 Oximation of this mixture (26 
mmol) with hydroxylamine hydrochloride (31 mmol) in 
aqueous ethanol, followed by chromatography on silica gel 
furnished the cis-oxime 49 (mp 143-145 0C; 40%). It was no­
ticed that the c/s-octalone 2 reacted faster with hydroxylamine 
than its trans isomer 3. Consequently the reaction of the mix­
ture of 2 and 3 with a stoichiometric amount (relative to 2) of 
hydroxylamine hydrochloride and NaOAc in methanol en­
abled the pure cis-oxime 4 to be separated from unchanged 
trans-ketone 3 " by simple crystallization from isopropyl al­
cohol. Reduction'2 of the oxime 4 with 2 equiv of NaBHaCN 
in methanol66 afforded exclusively the hydroxylamine 59 (mp 
133-135 0C; 100%). Heating of 5 with 5 equiv of parafor­
maldehyde in the presence of molecular sieve in toluene60 gave 
the bridged isoxazolidine 79 as an oil (70%). This transfor­
mation presumably involves a transient nitrone, 6, which 
undergoes a highly regioselective intramolecular addition to 
a nonpolarized olefinic bond. Not even a trace of the corre­
sponding positional isomer (isomer D in Scheme I) was found 
in the reaction mixture. Methylation of the adduct 7 with 1.5 
equiv of methyl fluorosulfonate in ether,6d followed by re­
duction of the resulting salt with LiAlH46e gave the alcohol 
810'13 (mp 75-77 0C; 97%). Oxidation of 8 with Jones' reagent 
furnished the hydrochloride of the racemic alkaloid 9 (mp 
238-240 0C, sealed capillary, reported mp 171-172 0C;5 98%). 
The free base 9 was identified by comparison of its ir, 1H 
NMR, and mass spectra as well as its TLC and GC behavior 
with those of natural d- and synthetic ^,/-luciduline. 

A key feature of our approach is that during the conversion 
of 1 to 9 the original chiral center largely controls the devel­
oping configurations of the four other chiral centers. It may 

be further pointed out that this synthesis nicely illustrates the 
utility of intramolecular additions of iV-alkenylnitrones as an 
equivalent of the Mannich reaction. The scope of the thermal 
reaction of ,/V-alkenylhydroxylamines with aldehydes is pres­
ently being explored by using a variety of model com­
pounds. 
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A Total Synthesis of Gliotoxin 

Sir: 

Gliotoxin I,1 an antibiotic produced by various species of 
Gladiocladium, Trichoderma, Aspergillus, and Penicillium, 
presents a formidable challenge to synthetic chemists. Dif­
ficulties in controlling stereochemistry as well as functionality 
are accumulated in this small molecule. Four asymmetric 
centers in addition to two delicate ring systems—hydrated 
benzene and epidithiapiperazinedione—are present. We would 
like to report the first total synthesis of gliotoxin, using a novel 
solvent-dependent Michael reaction as a key step. 

The thioacetal 22'3 (mp 250-252 0C) was synthesized from 
glycine sarcosine anhydride in six steps4 in 30% overall yield 
by the method previously reported.5 Michael reaction of 4-
carbo-re/-/-butoxybenzene oxide 36 (excess) with 2 in meth­
ylene chloride containing Triton B at room temperature for 
a short period afforded the alcohol 43 (mp 217-218 0C dec) 
as the major product (45% yield) and the epimeric alcohol 53 

(mp 255-257 0C dec) as the minor product (15% yield). The 
ratio of alcohols 4 and 5 produced in this Michael reaction was 
found to be dependent on the solvent and the time of reaction. 
A 3:1 ratio (88% yield) favoring the alcohol 5, the minor 
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